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Metabolic engineering aims to design high performance
microbial strains producing compounds of interest. This
requires systems-level understanding; genome-scale mod-
els have therefore been developed to predict metabolic
fluxes. However, multi-omics data including genomics,
transcriptomics, fluxomics, and proteomics may be re-
quired to model the metabolism of potential cell factories.
Recent technological advances to quantitative proteom-
ics have made mass spectrometry-based quantitative
assays an interesting alternative to more traditional im-
muno-affinity based approaches. This has improved spec-
ificity and multiplexing capabilities. In this study, we de-
veloped a quantification workflow to analyze enzymes
involved in central metabolism in Escherichia coli (E. coli).
This workflow combined full-length isotopically labeled
standards with selected reaction monitoring analysis.
First, full-length 15N labeled standards were produced and
calibrated to ensure accurate measurements. Liquid
chromatography conditions were then optimized for re-
producibility and multiplexing capabilities over a single
30-min liquid chromatography-MS analysis. This work-
flow was used to accurately quantify 22 enzymes involved
in E. coli central metabolism in a wild-type reference
strain and two derived strains, optimized for higher
NADPH production. In combination with measurements
of metabolic fluxes, proteomics data can be used to

assess different levels of regulation, in particular en-
zyme abundance and catalytic rate. This provides infor-
mation that can be used to design specific strains used
in biotechnology. In addition, accurate measurement of
absolute enzyme concentrations is key to the develop-
ment of predictive kinetic models in the context of
metabolic engineering. Molecular & Cellular Proteomics
13: 10.1074/mcp.M113.032672, 954–968, 2014.

The concept of producing economically useful compounds
using a “cell factory” was introduced with the advent of re-
combinant DNA technologies, and became fully established in
the 1980s when the Food and Drug Administration approved
the use of recombinant insulin (1). This concept is now largely
used in the food, pharmaceutical and biotechnology indus-
tries for the production of various compounds such as poly-
peptides, L-threonine (2), or artemisinin, an anti-malaria drug
(3) using adapted Escherichia coli (E. coli)1 strains. As a result
of increasing petrol prices and feedstock limitations, cell fac-
tories are now also used to produce chemicals from renew-
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able resources through fermentation, building upon advances
in metabolic engineering methods (4).

Metabolic engineering consists in optimizing the genetic
and regulatory processes of the cell to produce large amounts
of a given chemical. Metabolic engineering requires detailed
omics analyses to identify targets that can be manipulated
through targeted genetic modifications to improve and/or
adapt cells (5).

Various factors can affect the yield of a genetically modified
cell factory, including consumption of reaction intermediates
by native metabolic pathways, control of mRNA levels, regu-
lation of small RNA or final enzyme abundances and activities.
To finely tune metabolic pathways, the different levels of
regulation within the cell must be identified and their contri-
bution to overall flux control understood. Systems biology
approaches aim to provide this type of information. For in-
stance, metabolic networks can be converted to constraint-
based models (CBMs), which allow metabolic fluxes to be
predicted on a genome-wide scale (6) (7). As described by
Feist and Palsson (8), the construction of such genome-scale
models can be divided into four key steps: 1- generation of
high-throughput datasets (omics data), 2- genome-wide net-
work reconstruction, 3- conversion of network reconstruction
into a CBM, and 4- application of computational models for
metabolic engineering.

For quantitative data on protein levels, enzyme-linked im-
muno-sorbent assay (ELISA) (9) (10) has long been considered
the gold standard, because of its high sensitivity and
throughput; although limitations include labor intensiveness
and the high cost of assay development (11). As detailed by
Bantscheff et al. (12), proteomic approaches and instrument
advances in recent years have made quantitative liquid chro-
matography-mass spectrometry (LC-MS) techniques a viable
alternative for generating data on protein levels. Indeed, using
appropriately labeled standards, MS analyses can provide
highly specific and accurate data. MS is also adaptable for
highly multiplexed analyses, in contrast with conventional im-
munoassays. Selected Reaction Monitoring (SRM), by confer-
ring two levels of selection, filtering predefined peptide ions
and specific fragment ions (13), makes it possible to detect
and quantify several proteins with high sensitivity and speci-
ficity in a single assay. Combined with SRM analysis, stable
isotope dilution (SID) makes absolute protein quantification
feasible. SID in proteomics consists in spiking a known
amount of isotopically labeled peptide or protein standards
into the sample. Standards and endogenous peptide species
can be distinguished in MS spectra because of their slight and
predictable mass difference. In contrast, the physical and
chemical properties of the different species are identical, re-
sulting in co-elution during the LC run. Accurate information
on the amount of spiked standard allows protein concentra-
tion to be deduced from the ratio of signal intensities between
the heavy standard and the corresponding endogenous pep-
tide (14).

Different standards have been described, such as labeled
peptide standards (Absolute Quantification standards AQUATM),
which are chemically synthesized isotope-labeled peptides.
These are spiked into samples just before MS analysis (15).
Alternatively, Quantitative concatemer standards (QconCAT)
are artificial concatemers of labeled peptides that can be
spiked into samples before trypsin digestion (16). With both
these approaches, the efficiency of trypsin digestion is crit-
ical, and because prefractionation steps are often neces-
sary, the accuracy of protein concentration measurements
might be biased. Protein Standard Absolute Quantification
(PSAQTM) limits these biases, because these full-length iso-
topically labeled standards are expected to behave in the
same way as the endogenous target proteins throughout
sample preparation (17). Studies by Brun et al. (18, 19)
demonstrated new possibilities for quantitative MS, specif-
ically in the context of clinical biomarkers detection, when
targeted mass spectrometry is combined with PSAQ stand-
ards to enhance the accuracy of quantification. Although
more accurate, the PSAQ strategy requires the synthesis of
full-length recombinant proteins in a labeled form and may
present specific difficulties.

As outlined above, to generate genome-scale models some
prior biological knowledge is required. This knowledge is typ-
ically retrieved from omics experiments. We show here that an
MS-based pipeline allows generating high-throughput accu-
rate quantitative proteomics data, which can be used in com-
bination with genome-scale models to guide choices in the
design of cell factories in metabolic engineering. The study
focused on Escherichia coli (E. coli), which is one of the most
widely used cell factory platforms, and has been extensively
studied in systems biology and used to develop very detailed
mathematical models (8). We particularly targeted central car-
bon metabolism (CCM) because it is involved in transport and
oxidation of the main carbon sources, and all the natural
metabolites produced by E. coli are derived from 12 precursor
metabolites, which are either CCM intermediates or co-fac-
tors like ATP, NADH, and NADHP (20). This makes CCM an
essential crossroad for metabolic engineering (21).

We chose to use a PSAQ-like strategy to measure the
concentrations of enzymes involved in E. coli CCM with high
accuracy in a multiplexed assay. To do this, we optimized a
system producing full-length 15N-labeled standards. To be
fully compatible with high-throughput screening, no prefrac-
tionation steps were carried out on the E. coli proteome, and
SRM analyses were performed using scheduled mode to
allow multiplexed analyses (22). Analytical performances were
tested using titration curves. The so-developed scheduled-
SRM assay, monitoring 720 transitions during a single LC-
SRM run, was used to accurately quantify 22 key enzymes
involved in CCM in E. coli (Fig. 1 and Table I). Using this
workflow (Fig. 2), we investigated a wild-type reference E. coli
strain and two genetically modified strains with an increased
NADPH/NADP� ratio (23). Enzyme concentration measure-
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ments were combined with previously obtained metabolic flux
measurements for calculating effective or apparent catalytic
rates of the enzymes (24) (25). The results show that our
approach is applicable for metabolic engineering purposes,
and is particularly useful for analyzing whether a change in
flux is because of a change in the concentration or to the
catalytic rate of an enzyme. We expect these data and this
methodology to be very useful in developing kinetic models of
metabolism.

MATERIALS AND METHODS

Material—Primers were purchased from Sigma (St. Louis, MO).
Host cells, E. coli BL21 (DE3) and E. coli DH5�, were purchased from
New England Biolabs (Ipswich, MA). FastDigest® restriction en-
zymes, EcoRI, HindIII, SapI, XhoI and imperial protein stain were
purchased from Thermo Fisher Scientific (Waltham, MA). The expres-
sion vector pPAL7 and Profinity eXact cartridges were from Bio-Rad

(Hercules, CA). Nucleospin® Plasmid and Extract II kits were pur-
chased from Macherey Nagel (Duren, Germany). Luria-Bertani (LB)
broth was purchased from Invitrogen (Carlsbad, CA). (15NH4)2SO4

was obtained from Eurisotop (Saint-Aubin, France). Trypsin and LysC
were from Promega (Madison, WI). Precast SDS-NuPAGE Novex
Bis-Tris 4–12% acrylamide gradient gels were purchased from Invit-
rogen (Carlsbad, CA). Bovine serum albumin (BSA) standard refer-
ence material 927d was obtained from the National Institute of Stand-
ards and Technology (NIST, Gaithersburg, MD). Urea, ammonium
bicarbonate, DTT, and iodoacetamide were purchased from Sigma.
Sep-Pack tC18 1cc vacuum cartridges were supplied by Waters
(Manchester, England).

Construction of Expression Strains—Genes coding for the proteins
of interest were PCR-amplified from MG1655 gDNA using forward
and reverse primers designed with both Vector NTI® and Geneious®
software. List of primers is provided in supplemental Data File S1.
PCR products were purified using nucleospin® extract II kit and
digested with the restriction enzymes indicated in supplemental Data
File S1. Fragments were then ligated into pPAL7, a fusion vector

FIG. 1. Overview of the central car-
bon metabolism network in Esche-
richia coli. The main pathways of central
carbon metabolism studied in this work
are shown, including glycolysis, the tri-
carboxylic acid pathway (TCA), the
glyoxylate shunt, and the pentose phos-
phate pathway (PPP). Black squares in-
dicate major metabolic intermediates.
Gray boxes highlight the twenty-two en-
zymes targeted in this work.
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carrying an ampicillin-resistance gene, and a Profinity exact tag® (for
details of the protocol, see the Bio-Rad supplier notice).

DH5� E. coli strains were transformed and plasmids were purified
using the Nucleospin® plasmid kit. Presence of the fragment was
checked by double digestion and analysis after electrophoresis on a
0.8% agarose gel. Fragments were then sequenced (GATC biotech,
Konstanz, Germany). E. coli expression strains were stored at �80 °C
in LB broth containing 20% glycerol (v/v).

Study Strains and Culture Conditions—Genetically modified and
wild-type E. coli strains were obtained from Auriol et al. (23), their
genotypes are described in Table II. Cultures were performed in
minimal media containing 5 g/L glucose (see below). Cells were
harvested during the exponential growth phase, based on OD at 600
nm.

Production and Purification of Full-length 15N-labeled Standards—
Media and Growth Conditions—BL21-DE3 E. coli strains were

grown on minimal medium (32 mM K2HPO4, 31 mM KH2PO4, 28.5 mM

C6H8O7, 4.1 mM MgSO4, 0.3 mM CaCl2, 14 �M ZnSO4, 12 �M CuCl2,
118 �M MnSO4, 34 �M CoCl2, 16 �M H3BO3, 2 �M NaMoO4; pH 6.8).
Nitrogen was only provided as (NH4)2SO4 (7.5 mM final concentration).
Isotopically labeled (15NH4)2SO4 was used to produce labeled
proteins.

For pre-culture, minimal media containing 10% LB was inoculated
with the over-expressing strains of interest. Culture in minimal media
was inoculated with pre-cultures to obtain an initial OD600 of � 0.2.
Protein expression was induced with 1 mM IPTG, and cells were
grown to OD600 � 4.

Cultures were centrifuged 5 min at 8000 g, supernatant was dis-
carded, and cells were washed in the same volume of fresh PBS.
Cells were resuspended in 100 mM KPO4, pH 7.6 buffer for sonication.
Lysates were centrifuged 10 min at 12,000 g and supernatant was
filtered through 0.22 �m membranes.

Protein Purification Conditions and Verification of 15N isotope In-
corporation—Proteins were purified using 5 ml Profinity eXact car-

tridges (Bio-Rad®) according to the supplier protocol. The duration of
incubation in sodium fluoride (100 mM, pH 7.6) was adapted for each
protein to optimize tag cleavage. For the proteins expressed here,
between 2 h at room temperature and 12 h at 4 °C were necessary.

Purified proteins were either stored lyophilized or in 25 mM

NH4HC03 10% glycerol (v/v) at �80 °C.
15N incorporation into recombinant proteins was determined on

peptides after digestion of 15N labeled proteins, as described below.
LC-MS/MS analysis was performed in enhanced resolution data ac-
quisition mode on a 4000 QTRAP instrument (ABSciex, Foster City,
CA), as described below. Simulated isotopic distributions with varying
15N incorporation were generated for selected 15N tryptic peptides
using Isopro® software (https://sites.google.com/site/isoproms/
home). The experimental isotope incorporation rate was determined
by comparing simulated and experimental isotopic distributions using
a least-squares regression method (supplemental Data File S2).

Amino Acid Analysis (AAA) for Standard Titration—Standards were
calibrated using the AAA-MS (Amino Acid Analysis coupled to Mass
Spectrometry) approach described by Louwagie et al. (26). Briefly, the
protein standard (1 �g, previously titrated by UV absorbance at 280
nm) was mixed with 1 �g of NIST bovine serum albumin standard.
Then microwave-assisted acidic hydrolysis was performed using the
Discover protein hydrolysis apparatus (CEM, Matthews, NC).

Samples were solubilized in 20 �l of 50% acetonitrile, 0.1% formic
acid. The autosampler from an HPLC-Ultimate 3000 (Dionex, Voisins
Le Bretonneux, France) was used to inject 10 �l of each sample (in a
20 �l injection loop) at a flow rate of 6 �l/min (mobile phase: 50%
acetonitrile, 0.1% formic acid) directly into the nanosource of an
LTQ-Orbitrap XL (Thermo Fisher Scientific). MS signal intensity was
averaged for each amino acid over 2.5 min. The intensity of each
amino acid in the standard and the analyte were used to calculate
quantities. For more details, see (26).

Trypsin and LysC Digestion—Proteins or E. coli lysates were solu-
bilized in 8 M urea, 50 mM NH4HC03 buffer, reduced for 30 min at

TABLE I
Enzymes targeted in central carbon metabolism. Short name, full name, accession number, pathways they are involved in and molecular weight

of the 22 enzymes studied are indicated. All proteins were produced in their light and heavy versions

Short
name

Name
Uniprot accession

number
Pathway

Molecular
weight (Da)

GapA Glyceraldehyde-3-phosphate dehydrogenase A P0A9B2 Glycolysis 35 532
PckA Phosphoenolpyruvate carboxykinase �ATP� P22259 Gluconeogenesis 59 643
AceA Isocitrate lyase P0A9G6 Glyoxylate cycle 47 522
Zwf Glucose-6-phosphate 1-dehydrogenase P0AC53 PPP 55 704
GltA Citrate synthase P0ABH7 TCA 48 015
MaeB NADP-dependent malic enzyme P76558 Gluconeogenesis 82 417
Glk Glucokinase P0A6V8 Glycolysis 34 723
Ppc Phosphoenolpyruvate carboxylase P00864 Gluconeogenesis 99 063
TktB Transketolase 2 P33570 PPP 73 043
Pgi Glucose-6-phosphate isomerase P0A6T1 Glycolysis 61 530
DhsA Succinate dehydrogenase flavoprotein subunit P0AC41 TCA 64 422
LpdA Dihydrolipoyl dehydrogenase P0A9P0 Glycolysis 50 688
Mdh Malate dehydrogenase P61889 TCA 32 337
SucC Succinyl-CoA ligase �ADP-forming� subunit beta P0A836 TCA 41 393
Eda KHG/KDPG aldolase P0A955 Glyoxylate cycle 22 284
GpmA 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase P62707 Glycolysis 28 556
TpiA Triosephosphate isomerase P0A858 Glycolysis 26 972
IcdA Isocitrate dehydrogenase �NADP� P08200 TCA 45 757
AckA Acetate kinase P0A6A3 Acety-CoA biosynthesis 43 290
PpsA Phosphoenolpyruvate synthase P23538 Gluconeogenesis 87 435
AceE Pyruvate dehydrogenase E1 component P06958 Glycolysis 99 668
AceB Malate synthase A P08997 Glyoxylate cycle 60 274
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room temperature with 10 mM DTT and alkylated for 45 min at room
temperature in the dark with 100 mM iodoacetamide. Samples were
diluted with 50 mM NH4HC03 to reach a final urea concentration of 2
M. LysC digestion was performed for 2 h at 37 °C at an enzyme/
protein ratio of 1/100 (w/w). Samples were diluted once again with 50
mM NH4HC03 to reduce urea to 0.5 M final concentration before
performing trypsin digestion for 2 h at 37 °C at an enzyme/protein
ratio of 1/20 (w/w). Peptide samples were finally desalted on Sep-
Pack tC18 1cc vacuum cartridges, and resolubilized in a solvent
containing 4% acetonitrile, 0.1% formic acid.

MS and MS/MS Experiments—MS and MS/MS analyses were
performed on a hybrid triple quadrupole/ion trap mass spectrometer
(4000 QTRAP; ABSciex, Les Ulis, France). Liquid chromatography
(LC) separation was performed on an ultimate 3000 LC-chromatog-
raphy system (Dionex, Voisins le Bretonneux, France) coupled to a
Kinetex XB-C18 column, 2.1 � 150 mm, 2.6 �m, 100Å (Phenomenex,
Torrance, CA 90501). Peptides were separated using a linear 4% to
45% acetonitrile gradient over 30 min at a flow rate of 50 �l/min.

For MS/MS experiments, peptides were analyzed on a 4000
QTRAP hybrid triple quadrupole mass spectrometer (ABSciex, Les
Ulis, France) operated using a Turbo V source in Electrospray Ionisa-
tion (ESI) mode, operated in “Information Dependent Acquisition”
(IDA) mode under Analyst version 1.5.1 software (AB SCIEX). A pre-
cursor ion scan between m/z 400–1400 was performed as a survey
scan for the IDA method. Enhanced product ion (EPI) spectra were
acquired with a scan speed of 4000 amu/s using a dynamic fill time for
optimal MS/MS and rolling collision energy settings. Precursor and
product ion accuracies were 1.2 and 0.6 Da, respectively, which is in
line with the specifications of the 4000 QTRAP.

Data were acquired in positive mode with the ion spray voltage at
5500 V, curtain gas 15 (arbitrary units), interface heater temperature
350 °C. Collision exit, entrance and declustering potential were set to
27, 12, and 50 volts, respectively.

For SRM assays, collision energy was calculated using a linear
equation based on the manufacturer’s recommendations:

CE (volts) � 0.44 � m/z � 4 for doubly charged precursors

CE (volts) � 0.5 � m/z � 5 for triply charged precursors

During SRM assay for method development, the mass spectrom-
eter was operated in SRM mode, with a dwell time of 20 ms and a
maximum of 100 transitions. After method validation, the instrument
was operated using scheduled SRM mode (retention time windows:
60 s; target scan time: 2.5 s). A 30 s base width was estimated, and
twelve points were acquired per chromatographic peak.

Design of SRM Assays and MS/MS Identifications—A set of twen-
ty-two proteins was selected from among proteins involved in the
central metabolic pathways in E. coli (Fig. 1). Each purified protein
standard, in its labeled and unlabeled forms, was reduced, alkylated
and digested, according to the protocol described above. LC-MS/MS
analysis was performed on a 4000 QTRAP mass spectrometer. Peak
lists (mgf files) were generated using Analyst version 1.5.1 software
(AB SCIEX). MS/MS spectra were assigned to peptides using a se-
quence database search strategy. Mascot (version 2.4).was used as
the search engine. We generated a home-made Ecoli_K12 protein
sequence data bank (12548 sequences) from UniprotKB (http://
www.uniprot.org, release July 28, 2011) to retrieve proteins with
83333 Escherichia coli taxonomy (strain K12) (http://ebi3.uniprot.org/
uniprot/?query�taxonomy%3a83333&format�*). Trypsin was set as
the enzyme and 1 missed-cleavage was allowed; cystein carbam-
idomethyl was set as a fixed modification whereas mono and di-
oxidation of methionine was set as a variable modification. Mass toler-
ance for precursors and fragments ions was 1.2 and 0.6 Da

TABLE II
E. coli strains studied. Genotypes of the strains studied. Four genes
were deleted in NA23 strain to induce an NADPH/NADP� imbalance
�23�. NA176 strain resulted from the adaptive evolution of NA23,
leading to the appearance of a new pathway for NADPH reoxydation

through mutations in genes nuoF and rpoA

Strain Genotype

MG1655 Wild-type
NA23 MG1655 	pgi 	udhA 	qor 	edd
NA176 MG1655 	pgi 	udhA 	qor 	edd nuoF*-Km

rpoA*-Cm

pgi: Phospho glucose isomerase.
edd: Entner Doudoroff dehydratase.
qor: Quinone oxydoreductase.
udhA: Soluble transhydrogenase.
nuoF: NADH:ubiquinone oxidoreductase subunit F.
rpoA: RNA polymerase, alpha subunit.

FIG. 2. Accurate quantification workflow to analyze enzymes
involved in Escherichia coli central metabolism. Stable isotope
dilution combined with an MS-based analytical strategy was devel-
oped using full-length 15N labeled standards to ensure accuracy. To
ensure a straightforward workflow, no prefractionation steps were
carried out. Selected Reaction Monitoring (SRM) was used for optimal
selectivity and sensitivity.
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respectively. Peptide charge was set at 1, 2 and 3 and instrument
was ESI-TRAP. Identification results file (.dat) may be downloaded
from Peptide Atlas repository (http://www.peptideatlas.org/PASS/
PASS00273). MS/MS data were used to retrieve the best peptides for
each of the 22 purified proteins in order to build SRM transition lists.
Consequently, no specific cut-off score was set. Mascot results files
were used to build Skyline® libraries. Lists of SRM transitions for both
light and heavy versions of selected peptides were generated using
Skyline® software (27). Proteotypic peptides were selected, and the
sequence was confirmed to be unique using the BLAST program. In
line with Jaquinod et al. (28), five cysteine-containing peptides were
retained in the transition list. In contrast, methionine-containing pep-
tides were not included. The retention times for the selected peptides
were examined, and peptides were selected to provide a homogene-
ous distribution across the gradient. This resulted in selection of at
least three detectable proteotypic peptides for each protein targeted
in this study. For each selected peptide, three transitions were se-
lected. The higher fragments in the acquired MS/MS spectra were
preferentially chosen for setting up transitions, unless a similar tran-
sition exists for another protein. Finally, SRM transitions were vali-
dated by verifying that the retention time was identical for both heavy
and light versions. Transition lists may be downloaded from Peptide
Atlas repository (http://www.peptideatlas.org/PASS/PASS00272).

Quantitative Analysis—Quantitative SRM analyses were performed
using MultiQuant software (version 1.2, AbSciex). The MultiQuant
value for noise levels was 40%, and 2 min for the base-line subtrac-
tion window. All data were manually inspected to ensure correct
peak detection and accurate integration. Data may be downloaded
from Peptide Atlas repository (http://www.peptideatlas.org/PASS/
PASS00272).

The heavy area/light area (H/L) ratio was determined for each SRM
transition, and peptide ratios were calculated by averaging ratios for
all the transitions of a given peptide. The ratios obtained for the all the
different proteotypic peptides from a given protein were averaged to
determine the protein ratio. Standard deviation values and CVs were
calculated at the peptide and protein levels considering the technical
and the biological replicates (see supplemental Data File S8). Abso-
lute quantification was obtained from the heavy/light protein ratio
multiplied by the amount of standard spiked into the sample at the
beginning of the pipeline. The resulting enzyme quantifications were
converted to concentrations (mmolenzyme�mlcyto

�1) and number of
protein copies per cell (copies/cell) based on literature data (29) (30),
as described in supplemental Data File S3.

Calculation of (differences in) Effective Catalytic Rates—In steady-
state growth conditions, the flux J (mmolmetabolite�mlcyto

�1�h�1)
through a metabolic reaction can be written as J � E � keff, where E is
the enzyme concentration (mmolenzyme�mlcyto

�1) and keff is the effec-
tive or apparent catalytic rate (mmolmetabolite� mmolenzyme �

1�h�1), de-
fined similarly as in two recent papers (24) (25). keff was calculated
from measurements of E and J for each enzyme in the three strains
studied, as explained in supplemental Data File S3. Note that fluxes in
the NA23 and NA176 strains relative to the MG1655 reference strain,
J/JMG, can be split into the product of the relative enzyme concen-
trations E/EMG and the relative effective catalytic rates keff/keff-MG:
J/JMG � (E/EMG) � (keff/keff-MG). Flux and enzyme concentration ratios
were determined from the data for both the NA23 and NA176 strains,
and relative effective catalytic rates were calculated by dividing these
ratios.

RESULTS

In Cell Production of 15N Labeled Protein Standards—The
aim of this study was to use a proteomics quantitative pipe-
line, to ensure accurate data for analyzing the contributions of

enzyme concentrations and effective catalytic rates to ob-
served flux differences between strains and for building
predictive kinetic models. To begin, central metabolism path-
ways in E. coli were chosen, including glycolysis, gluconeo-
genesis, the glyoxylate shunt, the pentose phosphate path-
way (PPP) and the tricarboxylic acid pathway (TCA) (Fig. 1).
We chose to target key enzymes in each pathway, selecting
glyceraldehyde-3-phosphate dehydrogenase (GapA), in-
volved in glycolysis; glucose-6-phosphate dehydrogenase
(Zwf), part of the PPP; and citrate synthase (GltA) from the
TCA pathway, among others (Table I).

Twenty-two full-length 15N labeled standards were pro-
duced in transformed E. coli and purified. To ensure that
labeled standards were produced in sufficient quantities at
minimal substrate cost, growth conditions were optimized to
minimize (NH4)2SO4 concentration. The purification system
was chosen to ensure fast and efficient target purification.
With the Bio-Scale™ Mini Profinity eXact™ cartridge, purifi-
cation and tag cleavage are performed in a single step, which
reduces multi-step losses (31). SDS-PAGE analysis confirmed
the absence of major contaminants or degradations (supple-
mental Data File S4). For each 15N standard, it was also
necessary to check the isotope incorporation rate. This is
critical for generating accurate data. Incorporation rates were
evaluated using Isopro® software and found to be 98.5% for
all peptides (supplemental Data File S2). This agrees well with
the purity of the (15NH4)2SO4 used (98.5%). Light versions of
standards were also produced to establish titration curves.
Standard titration was also a critical step because it deter-
mines assay accuracy. To limit the amount of standards and
time required, AAA-MS was performed, as described by Lou-
wagie et al. (26). In contrast with [13C6, 15N2]-L-lysine and
[13C6, 15N4]-L-arginine standards, full-length 15N labeled
standards can be titrated using all twenty amino acids; amino
acids which are known to undergo chemical modifications
were nonetheless excluded. For instance, asparagine and
glutamine are subject to deamidation, producing aspartate or
glutamate; whereas cysteine, methionine, and tryptophan
may be modified through uncontrolled oxidation processes.
We therefore chose five amino acids to determine the con-
centration of the standards produced, these were: alanine,
isoleucine/leucine, phenylalanine, proline, and valine. Results
are expressed as the mean concentration for these five amino
acids. Each standard was assayed four times in technical
replicates. The coefficients of variation (CVs) calculated for
these assays were between 4 and 12% (supplemental Data
File S5).

For each standard, between 2 and 5 milligrams of protein
were obtained per 100 ml culture. We therefore set up a
pipeline to produce large amounts of labeled protein stan-
dards while limiting substrate costs. Standards were stored at
�80 °C prior to further analyses.

Designing a Scheduled SRM Assay for Key Enzymes in
E. coli Central Carbon Metabolism—To set up the SRM assay
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for key enzymes involved in E. coli CCM, a list of peptides and
fragment ions to be monitored must first be carefully defined
to ensure the specificity of analyses. Skyline® software (27)
was recently developed to automate this step. This software
requires two inputs: protein sequences and spectral libraries
for the target proteins. LC-MS/MS analyses were performed
after LysC and trypsin digestion of light and heavy proteins,
and MS/MS data were used to create the Skyline® library.
SRM methods were automatically generated, with three pro-
teotypic peptides per protein, except Eda, which is a small
protein producing only one detectable peptide. Three transi-
tions were monitored per peptide. All the peptides selected
were proteotypic peptides, i.e. of unique sequence in the
E. coli database and with good ionization properties (32). The
final list for the SRM assay consisted of 720 SRM transitions
(supplemental Data File S6).

To monitor these 720 SRM transitions, scheduled SRM
analyses (22) were performed. Parameters were carefully
tuned to optimize the limit of detection for all transitions. It
was necessary to find a trade-off between the number of
transitions to be monitored, peak resolution and sensitivity of
the analysis. We chose to analyze samples on a micro-LC
system with a flow rate at 50 �l/min. This configuration was
chosen because it results in highly reproducible retention
times (�10 s shift) allowing a retention time window of 60 s to
be used with confidence. Target scan time was set to 2.5 s,
allowing �12 points per chromatographic peak, which is the
peak definition recommended for quantification (33).

Thus, chromatographic conditions were optimized to en-
sure highly multiplexed capabilities, making it possible to
monitor 720 transitions during a single 30-min effective gra-
dient. Thus, 22 enzymes could be effectively and accurately
quantified in a single analysis.

Assay Validation in Terms of Accuracy, Precision, and Lin-
earity Range—The analytical performances of the quantification
method were checked using titration curves. This involved add-
ing increasing amount of light standard proteins to an E. coli
lysate while adding a constant amount of heavy standard to
each sample. The light version of proteins was added in
amounts ranging from the lowest endogenous amount, to as-
sess signal response linearity from basal to the highest potential
levels, as advocated by the Food and Drug Administration.
(http://www.fda.gov/downloads/Drugs/GuidanceCompliance
RegulatoryInformation/Guidances/UCM070107.pdf).

A preparation workflow was applied, including LysC diges-
tion in denaturing conditions (2 M urea), followed by trypsin
digestion. No prefractionation steps were applied. SRM anal-
yses were performed to determine the heavy/light ratio and
thus estimate the amount of light protein present in samples
(supplemental Data File S7). Estimated light protein amounts
were plotted against the quantities added. All titration points
were performed as full-process triplicates. This experiment
thus allows us to determine three key parameters of the
assay: 1. accuracy of the method, which is indicated by the

slope of the curve; 2. precision of the method, which is
indicated by the error bars corresponding to the CVs for
technical replicates; 3. the range of the linear response (R2).
The results indicate that our method is accurate, precise and
that the signal response is linear over the range tested (Fig. 3)
(Table III). The slope of titration curves was between 0.82
(Eda) and 0.98 (PpsA), and in all cases the linear regression
coefficient was higher than 0.998. The median CV for techni-
cal replicates was 2.9%, with 90% of replicates having a CV
of less than 4.1%. It can be noted that, for a given protein,
inter-peptide CVs were less than 20% (Supplemental data 7;
note that the CV could not be determined for Eda because
only one peptide was monitored).

The LLOQ is an important measure of performance as it
defines the lowest analyte concentration that can be accu-
rately measured; it thus represents a genuine measure of how
sensitive an assay is. A signal-to-noise ratio of 10 is frequently
used to define the LLOQ (34). However, with scheduled SRM
mode, background noise is extremely low, and there is no
easy and/or practical way to accurately measure co-eluting
noise. We therefore chose, in line with Kuzyk et al. (35) (36), to
determine the LLOQ of the assay empirically. Thus, the lowest
analyte concentration that can be measured with a CV 


20%, and an accuracy between 80 and 120% in the linear
response range is defined as the LLOQ. LLOQs were defined
for each assay using data from technical triplicates for each
concentration point in titration curves. The lowest point of
each titration curve was the endogenous level present in the
lysate (from MG1655, NA0023 or NA0176 strain), correspond-
ing to the lowest abundance of target protein. At endogenous
levels, CVs above 20% were only reached for Eda, Glk and
TktB (34%, 33%, and 34%, respectively). The LLOQ consid-
ered for these three proteins was therefore the amount of light
protein spiked into point 1 (P1) for titration curves (supple-
mental Data File S7). The LLOQs determined for each of the
twenty-two protein assays are indicated in Table III.

The titration results demonstrate that our analytical pipeline
is accurate, precise and linear; we therefore went on to use
the labeled standards described and the associated SRM
assay to measure enzyme concentrations in selected E. coli
strains.

Absolute Quantification of Twenty-two Proteins in MG1655
E. coli Lysates and in Genetically Modified Strains: Assessing
Workflow Efficiency—To verify the benefits of using labeled
protein standards to determine E. coli enzyme concentra-
tions, we first applied our SRM assay to the MG1655 wild-
type reference E. coli strain (Fig. 2). Twenty-two standards
were spiked into E. coli lysate. The rapid sample preparation
workflow, consisting in LysC followed by trypsin digestion,
was then applied, without sample decomplexification. Sched-
uled SRM analyses were performed as described above.
Heavy/light ratios were determined, and the endogenous con-
centrations of each protein were calculated. Three biological
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samples were prepared for each strain, and each biological
sample was analyzed twice in full-process technical replicates.

Absolute quantification was obtained for the 22 enzymes.
The least abundant protein, PpsA, was quantified at 491
copies per cell, although the most abundant, GapA, was
measured at 21,119 copies per cell. The biological CVs for
these concentrations were 1.8% and 4.7%, respectively (Ta-
ble IV), whereas technical CVs never exceeded 7%. For ab-
solute quantification of the wild-type E. coli (MG1655) strain,
we scanned 720 transitions during a single 60 min LC-SRM
analysis (30 min effective gradient) (supplemental Data File
S8). The results obtained for the wild-type strain confirmed
that this workflow is robust, efficient and has a high multiplex-
ing potential, while generating accurate, high-throughput
data.

In light of these results, the pipeline was used to measure
protein concentrations in two strains of biotechnological in-
terest, both genetically engineered to produce high levels of
NADPH (NA23 and NA176). NADPH is involved in many bio-
synthesis pathways, making it a potentially limiting cofactor
when synthetic pathways are engineered. As a consequence,
strains producing high levels of NADPH are interesting for
metabolic engineering purposes (37). The gene pgi, coding for
glucose-6-phosphate-isomerase, is deleted in the NA23 and
NA176 strains. Hence, we determined the abundance of 21 of
the 22 enzymes studied in the wild-type strain. The absolute
quantities obtained from biological triplicates were expressed
as a number of copies of each protein per cell (Table IV and
Fig. 4). The results presented in Fig. 4 distinguish between the
most abundant enzymes in each of the three strains, and
make it possible to compare variations in abundance between
strains. The dynamic range for these measurements was
around 103, because the least abundant protein, PpsA, was
estimated to be present at 285 copies per cell (CV 0.7%) in
strain NA176, although the most abundant protein, AceA, was
estimated to be present at 58,843 copies per cell (CV 9.2%).
The coefficients of variation for technical replicates never
exceeded 15% for these assays and 90% of technical CVs
were below 2.7% (supplemental Data File S8). For instance,
for strain NA23 (biological replicate 1), the copy numbers per
cell measured for Eda and AceA were 314 � 21 and 52,650 �

684, with technical CVs of 6.8% and 1.3%, respectively. This
confirms the precision of the methodology right across the
dynamic range.

We conclude from these results, using both technical and
biological triplicates, that the workflow developed is repro-
ducible, and can be used to generate accurate and multi-
plexed data at high-throughput.

Determining Effective Catalytic Rates Using Accurate Quan-
titative Proteomics Data and Metabolic Flux Measurements—
One of the main objectives of metabolic engineering is to
change metabolic flux distributions in microorganisms so as
to optimize the production of compounds of biotechnological
interest (38). Metabolic fluxes are controlled at different levels,

FIG. 3. Analysis of PpsA, using full-length 15N labeled standard
and scheduled SRM analysis. A, Total extracted ion chromatogram
for PpsA. Six peptides were monitored for this enzyme, with at least
three transitions per peptide. Zoom shows peptide IEDVPQEQR (re-
tention time 12.6 min) m/z of light peptide is 557, and m/z of heavy
peptide is 564. Three transitions were monitored for each version of
the peptide. B, Titration curve for protein PpsA, monitoring 6 peptides
and at least 3 transitions per peptide. Increasing amounts of light
protein were added to samples along with a constant amount of
labeled standard. The preparation workflow was applied, combining
LysC and trypsin digestion, without prefractionation steps. SRM ana-
lyses were performed to determine the heavy/light ratio and thus
estimate the light protein concentration. Estimated amounts of light
protein were plotted against the quantities added. All titration points
were performed in full-process triplicates. Linear regression was ap-
plied, and coefficients of variation are a measure of reproducibility
between full-process technical triplicates.
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including enzyme concentrations, kinetic parameters defining
enzyme properties (Km and kcat in irreversible Michaelis-Men-
ten kinetics), and the concentrations of substrates, products,
and co-factors (39). We used a simple phenomenological
model of metabolic fluxes, separating the effects of the abun-
dance and the catalytic rate of the enzymes. The model
makes the common assumption that metabolic fluxes are
proportional to enzyme concentrations (40). Thus, J � E � keff,
where J denotes metabolic flux, E enzyme concentrations,
and keff the so-called effective catalytic rate. The effective
catalytic rate describes how the maximum catalytic rate kcat is
modulated by concentrations of substrates and products as
well as co-factors regulating the catalytic action of the en-
zyme. As a consequence, keff is not a constant enzyme prop-
erty, like kcat, but depends on both enzyme properties and
condition-varying metabolite concentrations. By definition,
the effective catalytic rate is smaller than the maximum cat-
alytic rate, i.e., keff � kcat (supplemental Data File S3). The
model J � E � keff can be used even when exact, in vivo values
for the kinetic parameters are missing (which is often the
case).

Absolute values were available for two of the three variables
in the flux equation for the network of Fig. 1, for all three

strains: the metabolic flux distribution, as described by Auriol
et al. (23), and the enzyme concentrations from the SID-
scheduled SRM (scSRM) analysis presented in this study. The
effective catalytic rate could thus be computed from keff �

J/E, after converting the experimental data to comparable
units (supplemental Data File S3). This idea can be used to
gain a deeper insight into how flux differences across strains
are related to relative concentrations and effective catalytic
rates of enzymes, by comparing the wild-type reference strain
MG1655 with strains NA23 and NA176. The metabolic flux in
NA23 or NA176 relative to MG1655 (J/JMG) equals the prod-
uct of the relative enzyme concentrations (E/EMG) and the
relative catalytic rates (keff/keff-MG). For example, a twofold
increase in metabolic flux in strain NA23 (JNA23/JMG � 2)
could be because of a fourfold increase in enzyme concen-
tration (ENA23/EMG � 4) and a twofold decrease in its effective
catalytic rate (keff-NA23/keff-MG � 0.5).

We measured the relative metabolic fluxes and enzyme
concentrations, and calculated effective catalytic rates for 19
out of the 21 enzymes in all three strains growing on minimal
medium with glucose (PpsA and Glk were not considered, as
there was no flux data available for the corresponding reac-
tions). The results show that, for some reactions, the meta-

TABLE III
Titration results for the twenty-two enzymes targeted, and LLOQ estimation for each assay. Titration was performed in E. coli lysates for the
twenty-two target proteins. At least three proteotypic peptides were used per protein, except for Eda for which only one proteotypic peptide
was available. Three transitions were used per peptide. Each of the titration curves was fitted by linear regression; slope and linear regression
coefficient were calculated. Standard deviations were calculated based on three full-process technical replicates. The LLOQ indicated were
defined based on the lowest analyte concentration that could be measured with a CV 
 20% (CVs for full-process technical replicates), and

an accuracy between 80% and 120% in the linear response range

Protein Accuracya Endogenous quantityb

(�g/100 �g lysate) Linearityc Precisiond LLOQ
(at mid-range) (�g/100 �g lysate)

MG1655 lysate
LpdA 0.923 0.398 0.9994 0.6 0.414
SucC 0.919 0.196 0.9996 0.9 0.213
Mdh 0.862 0.347 0.9997 0.9 0.329
Zwf 0.940 0.061 0.9995 0.9 0.063
GltA 0.905 0.341 0.9996 1.7 0.291
PckA 0.930 0.056 0.9999 0.9 0.050
AceA 0.868 1.104 0.9967 1.7 0.913
MaeB 0.895 0.085 0.9998 1.3 0.081
GpmA 0.926 0.206 0.9993 1.3 0.212
AceB 0.901 0.403 0.9994 1.2 0.333

NA0023 lysate
Pgi 0.910 0.003 0.9998 2.9 0.061
GapA 0.954 0.525 0.9998 1.2 0.528
Ppc 0.926 0.130 0.9999 0.7 0.128
AckA 0.959 0.043 1.0000 2.0 0.043
IcdA 0.908 1.111 0.9995 0.4 1.068
TpiA 0.970 0.117 1.0000 0.5 0.115
AceE 0.951 0.218 1.0000 1.3 0.220

NA0176 lysate
DhsA 0.947 0.152 0.9987 3.0 0.169
Eda 0.829 0.024 0.9997 4.4 0.050
Glk 0.928 0.012 0.9997 5.4 0.036
TktB 0.968 0.044 0.9995 3.3 0.131
PpsA 0.984 0.044 0.9984 2.2 0.050

a Accuracy: slope of titration curve.
b Endogenous quantity: y-intercept from linear regression.
c Linearity: correlation coefficient (R2).
d Precision: intertechnical replicate CVs.
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bolic flux differences are mainly because of variations in en-
zyme concentrations, whereas for others they are the result of
changes in the catalytic activity of the enzymes (Table V and
supplemental Data File S9).

For instance, Auriol et al. (23) compared the NA23 strain
with the wild-type strain and found a 53-fold decrease in flux
through the reaction catalyzed by SucC, which generates
succinate from succinyl-CoA as part of the TCA cycle (Fig. 1).
We show that this change in flux results from a 3.3-fold
increase in enzyme concentration and a 180-fold decrease in
effective catalytic rate (Table V). This confirms that the differ-
ence in catalytic rate causes the change in metabolic flux. It
would not have been possible to reach this conclusion based
on flux data alone. Similar observations can be made for the
reactions catalyzed by DhsA, GltA, and GpmA, for which the
fluxes decreased 14, 14, 16-fold, respectively, in strain NA23
relative to the wild-type MG1655 strain. Although the enzyme
concentrations increased 6.9, 5.9, 1.8-fold for these reac-
tions, the effective catalytic rates decreased 100, 83, and
29-fold, respectively (Table V). For AceA, Auriol et al. ob-
served a fivefold increase in flux. Our results indicate that this
is the result of an 8.1-fold increase in enzyme concentration,
and a 1.6-fold decrease in effective catalytic rate. The results
observed for AceA in this study match those reported by Hua
et al. (41), who demonstrated that deleting pgi led to in-

creased activation of the glyoxylate shunt. Consistent with
this, IcdA abundance increased 1.6-fold, whereas its catalytic
rate decreased 81-fold. This leads to a decreased flux through
the TCA cycle, with substrates redirected through the glyoxy-
late shunt (see below).

In addition to quantifying the relative contributions of en-
zyme concentrations and activities to observed flux changes,
the computation of effective catalytic rates may help in pin-
pointing flux bottlenecks in (reengineered) metabolic net-
works. If the effective catalytic rate is close to kcat, the enzyme
is operating not far from its maximum capacity. As a conse-
quence, a further increase of flux through the reaction will
require an increase of the enzyme concentration. In the
NA176 strain, for instance, the flux through the glyoxylate
shunt is much increased in comparison with the wild-type
MG1655 strain and the effective catalytic rate of AceB is 34.7
s�1. When comparing this number with the kcat constant,
using the compendium of Bar-Even et al. (42), the values of
keff and kcat are found to be close (kcat � 48.1 s�1). This
indicates a limiting capacity constraint in the network that
could be resolved by overexpressing the enzyme. Notice that
this diagnostic critically depends on the possibility to com-
pare keff with kcat, and thus on the capability to measure
absolute enzyme concentrations with high precision and ac-
curacy, like in this study.

TABLE IV
Accurate and multiplexed quantification results for twenty-two proteins in E. coli lysates. The proteomics workflow was used to accurately
quantify 22 key enzymes in E. coli central carbon metabolism during exponential growth in minimal medium supplemented with glucose.
Accurate quantities determined with full-length 15N labelled standards detected by scheduled SRM analyses are shown. For each strain,
biological triplicates were performed, and full-process technical triplicates were run for each sample. Accurate concentrations are expressed

in number of protein copies per cell. The coefficients of variation are calculated based on data for biological triplicates

Average quantity from biological replicates

Number of copies per cell

MG1655 NA23 NA176

Copies per cell CV (%) Copies per cell CV (%) Copies per cell CV (%)

Glycolyse Glk 289* 1.8 463 16.7 119* 1.5
PpsA 491 1.8 690 4.4 285 0.7
Pgi 2431 2.1
AceE 3028 1.0 1022 10.7 1880 3.8
TpiA 3665 2.3 2046 33.5 1673* 2.4
GpmA 4945 1.6 5446 2.8 5325 3.8
LpdA 5512 3.1 3804 3.8 11,301 3.5
GapA 21,119 4.7 7605 33.3 10,749 5.9

Pentose phosphate pathway Zwf 778 2.9 579 13.7 1091 2.7
TktB 1019 4.3 887 26.4 268* 4.1

Entner Dourdonoff pathway Eda 2049 3.0 451* 43.9 484* 2.1
Glyoxylate shunt AceB 3846 2.7 7140 23.4 6433 4.0

GltA 4325 4.3 15,160 8.8 14,986 3.3
Mdh 7137 3.8 10,943 7.8 14,683 2.7
AceA 12,251 5.7 58,843 9.2 39,767 2.7

Krebs cycle DhsA 2002 7.1 8290 12.3 1472 4.7
SucC 3686 5.9 7336 2.9 4092 4.1
IcdA 12,145 3.4 11,446 16.1 30,637 2.6

Anaplerotic pathways PckA 525 3.3 3185 12.5 1133 4.7
MaeB 708 4.8 1608 10.4 919 3.2
Ppc 2668 3.6 748 49.5 2990 2.2

Acetate pathway AckA 686 14.0 420 5.6 431* 3.2

* Absolute quantities indicated are close to but below the LLOQ determined based on titration curves.

Multiplex and Accurate Quantification of E. coli Enzymes

Molecular & Cellular Proteomics 13.4 963

http://www.mcponline.org/cgi/content/full/M113.032672/DC1


Using the workflow and the labeled protein standards de-
veloped in this work, absolute enzyme concentrations can be
obtained for any E. coli strain cultivated in any experimental
conditions, and effective catalytic rates can be calculated
from flux data, if available. As demonstrated by the compar-
ison of the wild-type and mutant strains, information on the
effective catalytic rate of an enzyme can be used to distin-
guish between two levels of regulation of metabolic fluxes:
enzyme concentrations and the rates at which enzymes cat-

alyze reactions. The insights thus obtained can be used to
target metabolic engineering efforts, for instance to decide
whether it is worth increasing the expression of a gene coding
for a specific enzyme.

DISCUSSION

This article shows the use of an absolute and multiplexed
SID-MS based quantification workflow for modeling pur-
poses, dedicated to the in-depth study of E. coli central car-

FIG. 4. Escherichia coli central metabolism and absolute amounts of 22 enzymes involved in these pathways. The proteomics
workflow was used to accurately quantify 22 key enzymes in E. coli central carbon metabolism during exponential growth in minimal medium
supplemented with glucose. Absolute amounts are expressed as a number of protein copies per cell for 22 proteins from the wild-type strain
(MG1655), and for 21 proteins from the genetically modified strains (NA23 and NA176) from which the pgi gene is deleted. Results for MG1655,
NA23 and NA176 strains are indicated in blue, red and green, respectively, with a color intensity code to broadly indicate number of copies
per cell. This representation allows ready visualization of the most and least abundant proteins in central metabolism, and of variations between
wild-type and modified strains.
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bon metabolism. The method is based on stable isotope
dilution combined with MS-based analysis using Selected
Reaction Monitoring (SRM). Previous studies have demon-
strated that several proteins could be detected and accurately
quantified with high sensitivity and specificity using peptides
(43) or concatemers standards (44) coupled to SRM analysis.
More especially, Carroll et al. (44) described the absolute
quantification of 27 enzymes (and isoenzymes) of the yeast

glycolysis pathway using one 88 kDa size concatemers. In the
present work, we chose an absolute quantification method-
ology that allows the best possible accuracy for CCM enzyme
concentrations measurements. Indeed, in order to obtain
highly accurate measurements, choices had to be made, con-
cerning the type of standards, the MS analysis mode, and
quality control of the overall workflow. In the context of large
scale studies, AQUA and QconCAT standards are commonly
used for multiplexed absolute quantification experiments. For
example, a QconCAT strategy has been developed with the
objective to provide absolute quantification for at least 4000
proteins of yeast (45). However, as described by Brownridge
et al., “Quantification is impaired if either the QconCAT or the
analyte proteins are incompletely digested, such that the yield
of either peptide is incomplete - indeed, this is not a problem
unique to our workflow, but any quantitative approach using
proteolytic digestion to generate peptides as analytes.” Thus,
to ensure accurate measurement of protein concentrations,
stable isotope labeled proteins standards were chosen as
reference. Added at the very beginning of sample preparation,
those standards allow eliminating all biases and ensuring
accurate quantification. We decided to use full-length isotope
labeled standards to measure enzyme concentrations as ac-
curately as possible. Considering our study model (E. coli), it
appeared relevant to produce full-length isotopically labeled
standards in E. coli cells, to allow high production rates. The
first step was to develop a minimal growth medium limiting
substrate consumption and thus production costs. Then, a
purification system had to be found to allow easy and efficient
production of standards. We selected a system where purifi-
cation and tag cleavage were performed during a single step
(31). We then verified the isotope incorporation rate by com-
paring precursor ion mass spectra with a simulated isotopic
distribution. Finally, standards were calibrated, using an AAA-
MS approach which has the advantages of requiring tiny
amounts of starting material and a shorter time frame, and
which has similar accuracy to standard AAA (26). This work-
flow can be used for straightforward and efficient production
of large amounts of multiple full-length isotopically labeled
standards, and is particularly suitable for soluble proteins.
This system is not limited to E. coli proteins, and can be
extended for many applications where post-translational
modifications are not needed. For instance, Wang et al. (31)
developed a similar 15N labeled standard production system
to quantify human ApolipoproteinE, whereas another study
(46) produced 15N-labeled analogues to accurately quantify
DNA glycosylase.

A recent study has demonstrated that an SRM approach
can quantify proteins over a dynamic range between 50 and
106 copies per cell (43). According to Ishihama et al. (47), the
protein dynamic range in E. coli strains is �4 orders of mag-
nitude. The selectivity, sensitivity, and dynamic range capa-
bilities conferred by SRM make this approach the most ap-
propriate for our study. One of the main challenges was to

TABLE V
Variations in fluxes, enzyme concentrations, and effective catalytic
rates between strains MG1655, NA23 and NA176. Metabolic fluxes
were determined by Auriol et al. �23�, enzyme concentrations were
determined in this study. Metabolic fluxes and enzyme concentrations
can be used to calculate effective catalytic rates (supplemental Data
File S3 and supplemental Data File S9). The table shows the relative
difference in metabolic flux, enzyme concentrations, and effective
catalytic rate for 19 enzymes between the reference strain, MG1655,
and strains NA23 and NA176. pgi, which codes for Pgi, is deleted from
both NA23 and NA176 strains, while for the reactions catalyzed by

PpsA and Glk no flux data were available

Strain NA23 versus MG1655

JNA23/JMG ENA23/EMG keff-NA23/keff-MG

AceE 0.085 0.566 0.150
TpiA 0.072 0.935 0.077
GpmA 0.064 1.846 0.035
LpdA 0.085 1.157 0.073
GapA 0.046 0.604 0.076
Zwf 5.428 1.247 4.353
TktB 1.717 1.458 1.177
Eda 0.000 0.369 0.000
AceB 4.985 3.112 1.602
GltA 0.069 5.875 0.012
Mdh 0.110 2.570 0.043
AceA 4.985 8.050 0.619
DhsA 0.071 6.940 0.010
SucC 0.019 3.336 0.006
IcdA 0.020 1.580 0.012
PckA 0.392 10.161 0.039
Ppc 0.004 0.470 0.009
MaeB 1.329 3.808 0.349
AckA 0.000 1.025 0.000

Strain NA176 versus MG1655

J
NA176

/JMG ENA176/EMG keff-NA176/keff-MG

AceE 0.337 0.698 0.483
TpiA 0.637 0.513 1.242
GpmA 0.531 1.210 0.439
LpdA 0.337 2.304 0.146
GapA 0.393 0.572 0.688
Zwf 52.000 1.574 33.028
TktB 14.560 0.295 49.301
Eda 0.000 0.265 0.000
AceB 8.320 1.880 4.425
GltA 0.280 3.894 0.072
Mdh 0.251 2.312 0.108
AceA 8.320 3.648 2.281
DhsA 0.250 0.826 0.302
SucC 0.157 1.248 0.126
IcdA 0.198 2.835 0.070
PckA 0.072 2.425 0.030
Ppc 0.539 1.259 0.428
MaeB 8.320 1.459 5.702
AckA 0.096 0.706 0.136
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develop an analytical workflow allowing high-throughput, pre-
cise and accurate quantification across the whole range of
protein abundances for E. coli. We used a micro-LC configu-
ration to generate highly resolved chromatographic peaks,
with highly reproducible retention times. This allowed us to
accurately quantify 22 proteins, monitoring 720 transitions
during a single 30-min analysis. With only three peptides per
protein and three transitions per peptide (for both heavy and
light forms), the scSRM method described here could easily
be used for accurate quantification of up to 50 proteins si-
multaneously. The analytical performance of our workflow
was assessed using titration curves, and results showed a
high precision (low inter-technical and inter-peptide CVs). The
precision obtained led us to conclude that with full-length
standards, it should be possible to monitor only one peptide
without losing accuracy. With one peptide per protein and
three transitions per peptide (for both heavy and light forms),
it might be possible to accurately quantify 150 proteins in a
single run by scanning 900 transitions. Keseler et al. (48)
described small molecule metabolism in E. coli to be depen-
dent on 865 enzymes. This means that our technique could
potentially accurately quantify 20% of E. coli enzymes in a
single 30-min analysis.

We applied the quantification workflow to strains with in-
creased production of NADPH, an essential intermediate in-
volved in many biosynthesis pathways. We focused on how
this imbalance affected the abundance of CCM enzymes (21).
To do this, we studied the modified microorganisms devel-
oped by Auriol et al. (23). In strain NA23 (MG1655 	pgi 	edd
	udhA 	qor) NADPH overproduction was the result of dele-
tion of the pgi and edd genes. Auriol et al. showed that, to
compensate for the stress because of the NADPH/NADP�

imbalance, two adaptive mutations in two different genes
occurred to produce strain NA176 (23). The first of these,
nuoF*, occurred in the gene encoding a subunit of the water-
soluble NADH:ubiquinone, leading to novel NADPH reoxidiz-
ing pathways. The second mutation, rpoA*, occurred in the
gene coding for the alpha subunit of RNA polymerase, which
causes a global transcriptional rearrangement, involving the
repression of genes contributing to the TCA pathway and the
glyoxylate shunt (23). Results presented by Auriol et al.
showed that, in the case of NA23 and NA176, fluxes were
rerouted through the PPP, whereas the lower glycolysis path-
way was activated to produce pyruvate. TCA enzymes were
regulated through hyperactivation of the glyoxylate shunt,
thus limiting NADPH production by isocitrate dehydrogenase
(Fig. 1). This resulted in an accumulation of oxaloacetate,
which explains the need to activate anaplerotic pathways to
maintain the balance of TCA intermediates (21).

How can the accurate quantitative proteomics data ob-
tained with the approach presented in this study be exploited
for the analysis of the network? The absolute numbers in
Table IV are interesting in themselves, as they show to which
CCM enzymes the cell directs its protein synthesis invest-

ments. However, the data are even more valuable when
cross-referenced with other types of omics resources.

We have combined the proteomics data with flux distribu-
tions available from experiments carried out under exactly the
same conditions as in this study. This makes it possible to
analyze the relative contributions of the concentration and the
catalytic rate of enzymes to observed flux variations between
strains. For NA23, the increased flux through the AceA reac-
tion in the glyoxylate shunt was found to be mainly because of
a higher enzyme concentration with a relatively constant ef-
fective catalytic rate. A similar result was observed for AceB.
In contrast, flux reduction through IcdA appeared to be mainly
because of a diminished catalytic rate of the enzymes. These
results concur with studies describing regulation of the
glyoxylate bypass operon, aceBAK. This operon codes for the
glyoxylate shunt enzymes AceA and AceB, as well as isoci-
trate dehydrogenase kinase/phosphatase (AceK). AceK phos-
phorylates IcdA, to reduce its activity (49) (50). Thus, our
results, showing that AceA and AceB were present in in-
creased amounts whereas the effective catalytic rate of IcdA
decreased, are consistent with the known co-expression of
aceA, aceB, and aceK as well as the post-translational regu-
lation of IcdA by AceK. In the NA176 strain, which results from
adaptive evolution of NA23, the IcdA flux was higher than in
NA23. This appears to be because of an increased effective
catalytic rate, as the enzyme concentration remains similar in
both strains. The above results validate the consistency of our
strategy for calculating in vivo effective catalytic rates in pro-
karyote models from fluxes and enzymes concentrations. Re-
cently, effective catalytic rates were also used for understand-
ing the complex relation between the protein synthesis rate
and the growth rate of the cell (24)(25).

Quantitative proteomics, through the computation of effec-
tive catalytic rates of enzymes, thus makes it possible to
dissect network functioning in a novel way. In addition, this
information may also be of great value in the context of
metabolic engineering, as it indicates which enzymes operate
close to their maximum capacity and may thus be bottlenecks
in the network. For example, in the NA176 strain, where the
flux is rerouted through the glyoxylate shunt, the keff value of
AceB was found to be close to its maximal value, given by
kcat, thus suggesting a possible target for protein overexpres-
sion. Although interesting as a heuristic guideline, one should
be beware of the limits of this strategy. Assays for determining
kcat values are performed by means of purified enzymes in
vitro, and may therefore lead to a distorted view of the actual
in vivo situation (51). Even more importantly, control of met-
abolic fluxes is a global network property and the relaxation of
local capacity constraints for individual reactions is not guar-
anteed to increase the flux through those reactions (40).
Therefore, it will be interesting to integrate accurate quantita-
tive proteomics data into predictive models, both constraint-
based models (CBMs) of the flux distribution in metabolic
networks and mechanistic models including details of enzyme
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kinetics. For instance, enriching CBMs with quantitative pro-
teomics and metabolomics data, as part of IOMA (52), would
increase the accuracy of the metabolic fluxes predicted. Ulti-
mately, quantitative information on protein abundance may be
most useful when combined with both flux and metabolite data
in the construction of predictive kinetic models, which explicitly
take into account the regulatory mechanisms of the cell.

A recent example of the latter strategy is the study by
Smallbone et al. (53), who combined proteomics and metabo-
lomics data on yeast glycolysis with enzyme kinetic assays to
obtain in vivo values for kcat and Km which, when integrated
into a dynamic kinetic model, allowed to refine the picture of
the control of yeast glycolysis, distributed more widely over
the whole system than originally thought. Another example
is the data set of Ishii et al., who measured in parallel enzyme
and metabolite concentrations as well as fluxes and mRNA
levels in CCM of E. coli (54). These data have been used to
estimate the parameter values in a simplified model of the
metabolic network, revealing among other things a number of
critical issues for model identification in genome-scale kinetic
models, such as theoretical and practical limits on the iden-
tifiability of parameter values (55).

A limitation of the present work is related to the fact that
isoenzymes were not individually considered when analyzing
effective catalytic rates. As a consequence, the effective rates
of some enzymes might possibly be incorrectly calculated as
fluxes might result from the action of several enzymes. How-
ever, in prokaryote cells, like E. coli, isoenzymes are rare
because a given activity is more commonly controlled by a
single protein. Among the 22 chosen enzymes, only the tran-
sketolase activity involved two isoenzymes, TktA and TktB, of
which only TktB was measured. In order to obtain a reliable
estimate of the overall in vivo contribution of enzyme abundance
and effective catalytic rate to a change in flux, the abundances
of both isoenzymes would have to be quantified. In order to
separate the activity of each isoenzyme, in vitro assays can be
performed as described by Smallbone et al. (53).

In conclusion, in this work we describe the development of
a proteomics workflow allowing multiplex absolute quantifi-
cation of enzymes involved in E. coli CCM. We analyzed the
data thus obtained in an innovative way, by calculating effec-
tive catalytic rates of the enzymes for wild-type and mutant
strains optimized for higher NADPH production. This provides
clues about the relative contributions of enzyme concentra-
tions and their catalytic rates to flux changes observed across
different strains as well as about potential flux bottlenecks in
the network. Although important in their own right, the results
thus obtained also lead the way toward kinetic models of
metabolism that can be used as predictive tools in systems
biology and many applications in biotechnology.
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Garin, J., Dupuis, A., Jaquinod, M., and Brun, V. (2012) Introducing
AAA-MS, a rapid and sensitive method for amino acid analysis using
isotope dilution and high-resolution mass spectrometry. J. Proteome
Res. 11, 3929–3936

27. MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L.,
Frewen, B., Kern, R., Tabb, D. L., Liebler, D. C., and MacCoss, M. J.
(2010) Skyline: an open source document editor for creating and ana-
lyzing targeted proteomics experiments. Bioinformatics 26, 966–968

28. Jaquinod, M., Trauchessec, M., Huillet, C., Louwagie, M., Lebert, D.,
Picard, G., Adrait, A., Dupuis, A., Garin, J., Brun, V., and Bruley, C. (2012)
Mass spectrometry-based absolute protein quantification: PSAQ™
strategy makes use of “noncanonical” proteotypic peptides. Proteomics
12, 1217–1221

29. Volkmer, B., and Heinemann, M. (2011) Condition-dependent cell volume
and concentration of Escherichia coli to facilitate data conversion for
systems biology modeling. PLoS One 6, e23126

30. Hiller, J., Franco-Lara, E., and Weuster-Botz, D. (2007) Metabolic profiling
of Escherichia coli cultivations: evaluation of extraction and metabolite
analysis procedures. Biotechnol. Lett. 29, 1169–1178

31. Huang, L., Mao, X., Abdulaev, N. G., Ngo, T., Liu, W., and Ridge, K. D.
(2012) One-step purification of a functional, constitutively activated form
of visual arrestin. Protein Expr. Purif. 82, 55–60

32. Mallick, P., Schirle, M., Chen, S. S., Flory, M. R., Lee, H., Martin, D., Ranish,
J., Raught, B., Schmitt, R., Werner, T., Kuster, B., and Aebersold, R.
(2007) Computational prediction of proteotypic peptides for quantitative
proteomics. Nat. Biotechnol. 25, 125–131

33. Holcapek, M., Jirasko, R., and Lísa, M. (2012) Recent developments in
liquid chromatography-mass spectrometry and related techniques.
J. Chromatogr. A. 1259, 3–15

34. Keshishian, H., Addona, T., Burgess, M., Kuhn, E., and Carr, S. A. (2007)
Quantitative, multiplexed assays for low abundance proteins in plasma
by targeted mass spectrometry and stable isotope dilution. Mo.l Cell.
Proteomics 6, 2212–2229

35. Green, J. (1996) A practical guide to analytical method validation. Anal.
Chem. 68, 305A-309A

36. Kuzyk, M. A., Smith, D., Yang, J., Cross, T. J., Jackson, A. M., Hardie, D. B.,
Anderson, N. L., and Borchers, C. H. (2009) Multiple reaction monitoring-
based, multiplexed, absolute quantitation of 45 proteins in human
plasma. Mol. Cell. Proteomics 8, 1860–1877

37. Kabir, M. M., and Shimizu, K. (2003) Fermentation characteristics and
protein expression patterns in a recombinant Escherichia coli mutant
lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) produc-
tion. Appl. Microbiol. Biotechnol. 62, 244–255

38. Stephanopoulos, G. N., Aristidou, A. A., and Nielsen, J. (1998) Metabolic

Engineering: Principles and Methodologies. San Diego: Academic Press (Ed.)
39. Gerosa, L., and Sauer, U. (2011) Regulation and control of metabolic fluxes

in microbes. Curr. Opin. Biotechnol. 22, 566–575
40. Heinrich, R., and Schuster, S (1996) The regulation of cellular systems.

London: Chapman & Hall
41. Hua, Q., Yang, C., Baba, T., Mori, H., and Shimizu, K. (2003) Responses of

the central metabolism in Escherichia coli to phosphoglucose isomerase
and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185,
7053–7067

42. Bar-Even, A., Noor, E., Savir, Y., Liebermeister, W., Davidi, D., Tawfik, D. S.,
and Milo, R. (2011) The moderately efficient enzyme: evolutionary and
physicochemical trends shaping enzyme parameters. Biochemistry 50,
4402–4410

43. Picotti, P., Bodenmiller, B., Mueller, L. N., Domon, B., and Aebersold, R.
(2009) Full dynamic range proteome analysis of S. cerevisiae by targeted
proteomics. Cell 138, 795–806

44. Carroll, K. M., Simpson, D. M., Eyers, C. E., Knight, C. G., Brownridge, P.,
Dunn, W. B., Winder, C. L., Lanthaler, K., Pir, P., Malys, N., Kell, D. B.,
Oliver, S. G., Gaskell, S. J., and Beynon, R. J. (2011) Absolute quantifi-
cation of the glycolytic pathway in yeast: deployment of a complete
QconCAT approach. Mol. Cell. Proteomics 10, M111.007633

45. Brownridge, P., Holman, S. W., Gaskell, S. J., Grant, C. M., Harman, V. M.,
Hubbard, S. J., Lanthaler, K., Lawless, C., O’Cualain, R., Sims, P.,
Watkins, R., and Beynon, R. J. (2011) Global absolute quantification of a
proteome: Challenges in the deployment of a QconCAT strategy. Pro-
teomics 11, 2957–2970

46. Dizdaroglu, M., Reddy, P. T., and Jaruga, P. (2011) Identification and
quantification of DNA repair proteins by liquid chromatography/isotope-
dilution tandem-mass spectrometry using their fully 15N-labeled ana-
logues as internal standards. J. Proteome Res. 10, 3802–3813

47. Ishihama, Y., Schmidt, T., Rappsilber, J., Mann, M., Hartl, F. U., Kerner,
M. J., and Frishman, D. (2008) Protein abundance profiling of the Esch-
erichia coli cytosol. BMC Genomics 9, 102

48. Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S.,
Paulsen, I. T., Peralta-Gil, M., and Karp, P. D. (2005) EcoCyc: a compre-
hensive database resource for Escherichia coli. Nucleic Acids Res. 33,
D334–7

49. Yamamoto, K., and Ishihama, A. (2003) Two different modes of transcrip-
tion repression of the Escherichia coli acetate operon by IclR. Mol.
Microbiol. 47, 183–194

50. Rittinger, K., Negre, D., Divita, G., Scarabel, M., Bonod-Bidaud, C., Goody,
R. S., Cozzone, A. J., and Cortay, J. C. (1996) Escherichia coli isocitrate
dehydrogenase kinase/phosphatase. Overproduction and kinetics of in-
teraction with its substrates by using intrinsic fluorescence and fluores-
cent nucleotide analogues. Eur. J. Biochem. 237, 247–254

51. García-Contreras, R., Vos, P., Westerhoff, H. V., and Boogerd, F. C. (2012)
Why in vivo may not equal in vitro - new effectors revealed by measure-
ment of enzymatic activities under the same in vivo-like assay conditions.
FEBS J. 279, 4145–4159

52. Yizhak, K., Benyamini, T., Liebermeister, W., Ruppin, E., and Shlomi, T.
(2010) Integrating quantitative proteomics and metabolomics with a ge-
nome-scale metabolic network model. Bioinformatics 26, i255–60

53. Smallbone, K., Messiha, H. L., Carroll, K. M., Winder, C. L., Malys, N., Dunn,
W. B., Murabito, E., Swainston, N., Dada, J. O., Khan, F., Pir, P., Sime-
onidis, E., Spasic, I., Wishart, J., Weichart, D., Hayes, N. W., Jameson,
D., Broomhead, D. S., Oliver, S. G.,Gaskell, S. J., McCarthy, J. E. G.,
Paton, N. W., Westerhoff, H. V., Kell, D. B., and Mendes, P. (2013) A
model of yeast glycolysis based on a consistent kinetic characterisation
of all its enzymes. FEBS Lett. 587, 2832–2841

54. Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hi-
rasawa, T., Naba, M., Hirai, K., Hoque, A., Ho, P. Y., Kakazu, Y., Sug-
awara, K., Igarashi, S., Harada, S., Masuda, T., Sugiyama, N., Togashi,
T., Hasegawa, M., Takai, Y., Yugi, K., Arakawa, K., Iwata, N., Toya, Y.,
Nakayama, Y., Nishioka, T., Shimizu, K., Mori, H., and Tomita, M. (2007)
Multiple high-throughput analyses monitor the response of E. coli to
perturbations. Science 316, 593–597

55. Berthoumieux, S., Brilli, M., de Jong, H., Kahn, D., and Cinquemani, E.
(2011) Identification of metabolic network models from incomplete high-
throughput datasets. Bioinformatics 27, i186–95

Multiplex and Accurate Quantification of E. coli Enzymes

968 Molecular & Cellular Proteomics 13.4


